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Major depressive disorder (MDD) is a common illness accompanied by considerable morbidity, mortality, costs, and heightened 
risk of suicide. We conducted a genome-wide association meta-analysis based in 135,458 cases and 344,901 controls and iden-
tified 44 independent and significant loci. The genetic findings were associated with clinical features of major depression and 
implicated brain regions exhibiting anatomical differences in cases. Targets of antidepressant medications and genes involved 
in gene splicing were enriched for smaller association signal. We found important relationships of genetic risk for major depres-
sion with educational attainment, body mass, and schizophrenia: lower educational attainment and higher body mass were 
putatively causal, whereas major depression and schizophrenia reflected a partly shared biological etiology. All humans carry 
lesser or greater numbers of genetic risk factors for major depression. These findings help refine the basis of major depression 
and imply that a continuous measure of risk underlies the clinical phenotype.

MDD is a notably complex and common illness1. It is often 
chronic or recurrent and is thus accompanied by consider-
able morbidity, disability, excess mortality, substantial costs, 

and heightened risk of suicide2–8. Twin studies attribute approximately 
40% of the variation in liability to MDD to additive genetic effects 
(phenotype heritability, h2)9, and h2 may be greater for recurrent, 
early-onset, and postpartum MDD10,11. Genome-wide association 
studies (GWAS) of MDD have had notable difficulties in identifying 
individual associated loci12. For example, there were no significant 
findings in the initial Psychiatric Genomics Consortium (PGC) MDD 
mega-analysis (9,240 cases)13 or in the CHARGE meta-analysis of 
depressive symptoms (n =​ 34,549)14. More recent studies have proven 
modestly successful. A study of Han Chinese women (5,303 recurrent 
MDD cases) identified significant loci15, a meta-analysis of depressive 
symptoms (161,460 individuals) identified 2 loci16, and an analysis of 
self-reported major depression identified 15 loci (75,607 cases).

There are many reasons why identifying causal loci for MDD has 
proven difficult12. MDD is probably influenced by many genetic loci, 
each with small effects17, as are most common diseases18, including psy-
chiatric disorders19,20. Estimates of the proportion of variance attribut-
able to genome-wide SNPs (SNP heritability, hSNP

2 ) indicate that around 
one-quarter of the h2 for MDD is due to common genetic variants21,22 
and demonstrate that a genetic signal is detectable in genome-wide 
association data, implying that larger sample sizes are needed to detect 
specific loci given their effect sizes. Such a strategy has been proven 
in studies of schizophrenia, the flagship adult psychiatric disorder in 
genomics research. We thus accumulated clinical, population, and vol-
unteer cohorts23. This pragmatic approach takes the view that sample 
size can overcome heterogeneity to identify risk alleles that are robustly 
associated with major depression. Potential concerns about combining 
carefully curated research cohorts with volunteer cohorts were consid-
ered; multiple lines of evidence suggest that the results are likely to be 
applicable to clinical MDD. As discussed below, our analyses have neu-
robiological, clinical, and therapeutic relevance for major depression.

Results
Cohort analyses: phenotype validation. We identified seven 
cohorts that used a range of methods to ascertain cases with major 

depression (Table 1 and Supplementary Tables 1–3). The methods 
used by these cohorts were thoroughly reviewed, drawing on the 
breadth of expertise in the PGC, and we assessed the comparability 
of the cohorts using genomic data. We use ‘MDD’ to refer to directly 
evaluated subjects meeting standard criteria for major depressive 
disorder and use ‘major depression’ where case status was deter-
mined using alternative methods as well as to the phenotype from 
the full meta-analysis.

We evaluated the comparability of the seven cohorts by esti-
mating the common variant genetic correlations (rg) between 
them. These analyses supported the comparability of the seven 
cohorts (Supplementary Table 3), as the weighted mean rg was 0.76  
(s.e. =​ 0.03). The high genetic correlations between the 23andMe 
and other cohorts are notable. While there was no statistical evi-
dence of heterogeneity in the rg estimates for pairs of cohorts  
(P =​ 0.13), the estimate was statistically different from 1, which may 
reflect etiological heterogeneity. This estimate can be benchmarked 
against the slightly larger weighted mean rg between schizophrenia 
cohorts of 0.84 (s.e. =​ 0.05)21.

Given the positive evidence of the genetic comparability of these 
cohorts, we completed a genome-wide association meta-analysis 
of 9.6 million imputed SNPs in 135,458 MDD and major depres-
sion cases and 344,901 controls (Fig. 1). There was no evidence of 
residual population stratification24 (LD score regression intercept 
=​ 1.018, s.e. =​ 0.009). We estimated hSNP

2  to be 8.7% (s.e. =​ 0.004, 
liability scale, assuming lifetime risk of 0.15; Supplementary Fig. 1  
and Supplementary Table  3b), and note that this is about one- 
quarter of the h2 estimated from twin or family studies9. This frac-
tion is somewhat lower than that of other complex traits18 and is 
plausibly due to etiological heterogeneity (reflecting the mean rg <​1  
between cohorts).

To evaluate the impact of combining major depression cohorts 
that used different ascertainment methods, we undertook a series 
of genetic risk score (GRS) prediction analyses to demonstrate the 
validity of our genome-wide association results for clinical MDD 
(Fig.  2). Notably, the variance explained in out-of-sample pre-
diction increased with the size of the genome-wide association 
discovery cohort (Fig.  2a), with the GRS from the full discovery  
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risk variants and refine the genetic architecture of 
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sample meta-analysis explaining 1.9% of variance in liability 
(Fig.  2a, Supplementary Fig.  2, and Supplementary Table  4). For 
any randomly selected case and control, GRS ranked cases higher 

than controls with probability of 0.57 and the odds ratio of MDD  
for those in the tenth versus first GRS decile (OR =​ 10) was 2.4 
(Fig. 2b and Supplementary Table 4). GRS analyses in other disor-
ders (for example, schizophrenia25) have shown that the mean GRS 
increases with clinical severity in cases. We found a significantly 
higher major depression GRS in those with more severe MDD, as 
measured in different ways (Fig. 2c). Last, because around one-half 
of the major depression cases were identified by self-report (i.e., 
diagnosis or treatment for clinical depression by a medical profess
ional), we further evaluated the comparability of the 23andMe 
cohort with the other cohorts (full meta-analysis excluding 
23andMe, ‘FMex23andMe’) as detailed in Fig.  2c, Supplementary 
Table 5, and the Supplementary Note. Taken together, we interpret 
these results as supporting this meta-analysis of GWAS for these 
seven cohorts.

Implications for the biology of major depression. Our meta-
analysis of seven MDD and major depression cohorts identified 44 
independent loci that were statistically significant (P <​ 5 ×​ 10−8), sta-
tistically independent of any other signal26, and supported by mul-
tiple SNPs. This number supports our prediction that genome-wide 
association discovery in major depression would require about five 
times more cases than for schizophrenia (lifetime risk ~1% and h2 
~0.8) to achieve approximately similar power27. Of these 44 loci, 30 
are new and 14 were significant in a prior study of MDD or depres-
sive symptoms. The overlap of our findings with prior reports was 
as follows: 1 of 1 with CHARGE depressive symptom14, 1 of 2 over-
lap with SSGAC depressive symptom16, and 12 of 15 overlap with 
Hyde et al.28. There are few trans-ancestry comparisons for major 
depression, so we contrasted these European results with the Han 
Chinese CONVERGE study15 (Supplementary Note). The loci iden-
tified in CONVERGE are uncommon in Europeans (rs12415800, 
0.45 versus 0.02; rs35936514, 0.28 versus 0.06) and were not signifi-
cant in our analysis.

Table 2 lists genes in or near the lead SNP in each region, regional 
plots are in Supplementary Data  1, and Supplementary Tables  6  
and 7 provide summaries of available information about the bio-
logical functions of the genes in each region. In the Supplementary 
Note, we review four key genes in more detail: OLFM4 and NEGR1 
(notable for reported associations with obesity and body mass 
index29–34), RBFOX1 (notable for independent associations at both 
the 5′​ and 3′​ ends, a splicing regulator35,36, with a functional role that 
may be consistent with chronic hypothalamic–pituitary–adrenal 
axis hyperactivation reported in MDD37), and LRFN5 (notable for 
its role in presynaptic differentiation38,39 and neuroinflammation40).

Gene-wise analyses identified 153 significant genes after con-
trolling for multiple comparisons (Supplementary Table 7). Many of 
these genes were in the extended major histocompatibility complex 
(MHC) region (45 of 153), and their interpretation is complicated 
by high linkage disequilibrium (LD) and gene density. In addition 
to the genes discussed above, other notable and significant genes 
outside of the MHC region include multiple potentially ‘druggable’ 
targets that suggest connections of the pathophysiology of MDD to 
neuronal calcium signaling (CACNA1E and CACNA2D1), dopa-
minergic neurotransmission (DRD2, a principal target of antipsy-
chotics), glutamate neurotransmission (GRIK5 and GRM5), and 
presynaptic vesicle trafficking (PCLO).

Finally, comparison of the major depression loci with 108 loci for 
schizophrenia19 identified 6 shared loci. Many SNPs in the extended 
MHC region are strongly associated with schizophrenia, but impli-
cation of the MHC region is new for major depression. Another 
example is TCF4 (transcription factor 4), which is strongly asso-
ciated with schizophrenia but was  not previously  associated with 
MDD. TCF4 is essential for normal brain development, and rare 
mutations in TCF4 cause Pitt–Hopkins syndrome, which includes 
autistic features41. The  GRS calculated from the schizophrenia 
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Fig. 1 | Results of genome-wide association meta-analysis of seven 
cohorts for major depression. a, Relationship between adding cohorts 
and the number of genome-wide significant genomic regions (before the 
vetting used to define the final 44 regions). Beginning with the largest 
cohort (cohort 1 on the x axis), we added the next largest cohort (cohort 
2) until all cohorts were included (7 cohorts). The number next to each 
point is the total effective sample size, equivalent to the sample size where 
the numbers of cases and controls are equal. b, Association test quantile–
quantile plot showing a marked departure from the null model of no 
associations (y axis truncated at 10−12). c, Manhattan plot for association 
tests from meta-analysis of 135,458 major depression cases and 344,901 
controls, with the x axis showing genomic position (chromosomes 1–22 
plus the X chromosome) and the y axis showing statistical significance as 
–log10 (P) z statistics; the threshold for significance accounting for multiple 
testing is shown by the red horizontal line (P =​ 5 ×​ 10−8).
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genome-wide association results explained 0.8% of the variance in 
liability of MDD (Fig. 2c).

Implications from integration of functional genomic data. 
Results from ‘omic’ studies of functional features of cells and tis-
sues are necessary to understand the biological implications of the 
results of GWAS for complex disorders42. To further elucidate the 
biological relevance of the major depression findings, we integrated 
the results with functional genomic data. First, using enrichment 
analyses, we compared the major depression GWAS findings to 
bulk tissue mRNA-seq from Genotype-Tissue Expression (GTEx) 
data43. Only brain samples showed significant enrichment (Fig. 3a), 
and the three tissues with the most significant enrichments were all 
cortical. Prefrontal cortex and anterior cingulate cortex are impor-
tant for higher-level executive functions and emotional regulation, 
which are often impaired in MDD. Both of these regions were impli-
cated in a large meta-analysis of brain magnetic resonance imaging 
(MRI) findings in adult MDD cases44. Second, given the predomi-
nance of neurons in the cortex, we confirmed that the major depres-
sion genetic findings connect to genes expressed in neurons but not 
oligodendrocytes or astrocytes (Fig. 3b)45. Given the different meth-
ods used by the seven MDD/major depression cohorts in this study, 
demonstration of enrichment of association signals in the brain 
regions expected to be most relevant to MDD provides independent 
support for the validity of our approach.

Third, we used partitioned LD score regression46 to evaluate 
the enrichment of the major depression genome-wide associa-
tion findings in over 50 functional genomic annotations (Fig.  3c 
and Supplementary Table  8). The major finding was the signifi-
cant enrichment of hSNP

2  in genomic regions conserved across 29 
Eutherian mammals47 (20.9-fold enrichment, P =​ 1.4 ×​ 10−15). This 
annotation was also the most enriched for schizophrenia46. We could 
not evaluate regions conserved in primates or human ‘accelerated’ 
regions, as there were too few for confident evaluation47. The other 
enrichments implied regulatory activity and included open chro-
matin in human brain and an epigenetic mark of active enhancers 
(H3K4me1). Notably, exonic regions did not show enrichment, sug-
gesting that, as with schizophrenia17, genetic variants that change 
exonic sequences may not have a large role in major depression. 
We found no evidence that Neanderthal introgressed regions were 
enriched for major depression genome-wide association findings48.

Fourth, we applied methods to integrate genome-wide associa-
tion SNP results with those from gene expression and methylation 
quantitative trait locus (eQTL and meQTL) studies. SMR49 analysis 
identified 13 major depression–associated SNPs with strong evi-
dence that they control local gene expression in one or more tissues 

and 9 with strong evidence that they control local DNA methylation 
(Supplementary Table 9 and Supplementary Data 2). A transcrip-
tome-wide association study50 applied to data from the dorsolateral 
prefrontal cortex51 identified 17 genes where major depression–
associated SNPs influenced gene expression (Supplementary 
Table 10). These genes included OLFM4 (discussed above).

Fifth, we added additional data types to attempt to improve 
understanding of individual loci. For the intergenic associa-
tions, we evaluated total-stranded RNA-seq data from human 
brain and found no evidence for unannotated transcripts in 
these regions. A particularly important data type is assessment 
of DNA–DNA interactions, which can localize a genome-wide 
association finding to a specific gene that may be nearby or hun-
dreds of kilobases away52–54. We integrated the major depression 
results with ‘easy Hi-C’ data from brain cortical samples (3 adult, 
3 fetal, >​1 billion reads each). These data clarified three asso-
ciations. The statistically independent associations in NEGR1 
(rs1432639, P =​ 4.6 ×​ 10−15) and over 200 kb away (rs12129573, 
P =​ 4.0 ×​ 10−12) both implicate NEGR1 (Supplementary Fig. 3a), 
the former likely due to the presence of a reportedly functional 
copy number polymorphism (see Supplementary Note) and the 
presence of intergenic loops. The latter association has evidence 
of DNA looping interactions with NEGR1. The association in 
SOX5 (rs4074723) and the two statistically independent associa-
tions in RBFOX1 (rs8063603 and rs7198928, P =​ 6.9 ×​ 10−9 and 
1.0 ×​ 10−8) had only intragenic associations, suggesting that the 
genetic variation in the regions of the major depression associa-
tions act locally and can be assigned to these genes. In contrast, 
the association in RERE (rs159963, P =​ 3.2 ×​ 10−8) could not 
be assigned to RERE as it may contain super-enhancer elements 
given its many DNA–DNA interactions with many nearby genes 
(Supplementary Fig. 3b).

Implications based on the roles of sets of genes. A parsimonious 
explanation for the presence of many significant associations for a 
complex trait is that the different associations are part of a higher-
order grouping of genes55. These could be a biological pathway or a 
collection of genes with a functional connection. Multiple methods 
allow evaluation of the connection of major depression genome-
wide association results to sets of genes grouped by empirical or 
predicted function (pathway or gene set analysis).

Full pathway analyses are in Supplementary Table  11, and 19 
pathways with false discovery rate q values <​0.05 are summarized 
in Fig. 4. The major groupings of significant pathways were as fol-
lows: RBFOX1, RBFOX2, RBFOX3, or CELF4 regulatory networks; 
genes whose mRNAs are bound by FMRP; synaptic genes; genes 

Table 1 | Brief description of the seven MDD or major depression cohorts used in the meta-analysis

Sample Country Case ascertainment Cases Controls

PGC2913,a Various Structured diagnostic interviewsb 16,823 25,632

deCODE13 Iceland National inpatient electronic records 1,980 9,536

GenScotland78,79 UK Structured diagnostic interview 997 6,358

GERA80 USA Kaiser Permanente Northern California Healthcare electronic medical records 
(1995–2013)

7,162 38,307

iPSYCH81 Denmark National inpatient electronic records 18,629 17,841

UK Biobank82 (pilot data release) UK From self-reported MDD symptoms or treatment or electronic records69 14,260 15,480

23andMe28 (discovery sample)c USA Self-reported diagnosis or treatment for clinical depression by a medical 
professional

75,607 231,747

Total 135,458 344,901
aNineteen samples in addition to the ten samples published in the first PGC-MDD paper13. bOne sample used natural language processing of electronic medical records followed by expert diagnostic review. 
cIn Hyde et al.28, SNPs in 15 genomic regions met genome-wide significance in the combined discovery and replication samples and 11 regions achieved genome-wide significance in the discovery sample 
made available to the research community and used here. More details are provided in Supplementary Tables 1–3.
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involved in neuronal morphogenesis; genes involved in neuron pro-
jection; genes associated with schizophrenia (at P <​ 10−4)19; genes 
involved in central nervous system (CNS) neuron differentiation; 
genes encoding voltage-gated calcium channels; genes involved in 
cytokine and immune response; and genes known to bind to the ret-
inoid X receptor. Several of these pathways are implicated by GWAS 
of schizophrenia and by rare exonic variation of schizophrenia and 
autism56,57 and immediately suggest shared biological mechanisms 
across these disorders.

A key issue for common variant GWAS is their relevance for 
pharmacotherapy. We conducted gene set analysis that compared 
the major depression genome-wide association results to targets 
of antidepressant medications defined by pharmacological stud-
ies58 and found that 42 sets of genes encoding proteins bound 
by antidepressant medications were highly enriched for smaller 
major depression association P values than expected by chance (42 
drugs, rank enrichment test P =​ 8.5 ×​ 10−10). This finding connects  
our major depression genomic findings to MDD therapeutics and 
suggests the salience of these results for new lead compound dis-
covery for MDD59.

Implications based on relationships with other traits. Prior epi-
demiological studies associated MDD with many other diseases 

and traits. Because of limitations inherent to observational stud-
ies, understanding whether a phenotypic correlation is potentially 
causal or if it results from reverse causation or confounding is gen-
erally difficult. Genetic studies now offer complementary strategies 
to assess whether a phenotypic association between MDD and a risk 
factor or a comorbidity is mirrored by a nonzero rg (common vari-
ant genetic correlation) and, for some of these, evaluate the poten-
tial causality of the association given that exposure to genetic risk 
factors begins at conception.

We used LD score regression to estimate the rg of major depres-
sion with 221 psychiatric disorders, medical diseases, and human 
traits22,60. Supplementary Table  12 contains the full results, and 
Table 3 shows the rg values with false discovery rates <​0.01. First, 
the rg values were very high between our major depression genome-
wide association results and those from two studies of current 
depressive symptoms. Both correlations were close to 1 (the samples 
in one report overlapped partially with this meta-analysis16, but the 
samples from the other did not14).

Second, we found significant positive genetic correlations 
between major depression and every psychiatric disorder assessed 
along with smoking initiation. This is a comprehensive and well-
powered evaluation of the relationship of MDD with other psychi-
atric disorders, and these results indicate that the common genetic 
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Table 2 | 44 significantly associated genomic regions in meta-analysis of 135,458 major depression cases and 344,901 controls

Chr. Region (Mb) SNP Location (bp) P A1/
A2

OR 
(A1)

s.e. 
(log(OR))

Freq. Prev. Gene context

1 8.390–8.895 rs159963 8,504,421 3.2 ×​ 10–8 A/C 0.97 0.0049 0.56 H,S [RERE]; SLC45A1, 100,194

1 72.511–73.059 rs1432639 72,813,218 4.6 ×​ 10 –15 A/C 1.04 0.0050 0.63 H NEGR1, –64,941

1 73.275–74.077 rs12129573 73,768,366 4.0 ×​ 10–12 A/C 1.04 0.0050 0.37 S LINC01360, –3,486

1 80.785–80.980 rs2389016 80,799,329 1.0 ×​ 10–8 T/C 1.03 0.0053 0.28 H

1 90.671–90.966 rs4261101 90,796,053 1.0 ×​ 10–8 A/G 0.97 0.0050 0.37

1 197.343–197.864 rs9427672 197,754,741 3.1 ×​ 10–8 A/G 0.97 0.0058 0.24 DENND1B, –10,118

2 57.765–58.485 rs11682175 57,987,593 4.7 ×​ 10–9 T/C 0.97 0.0048 0.52 H,S VRK2, –147,192

2 156.978–157.464 rs1226412 157,111,313 2.4 ×​ 10–8 T/C 1.03 0.0059 0.79 [LINC01876]; NR4A2, 
69,630; GPD2, –180,651

3 44.222–44.997 chr3_44287760_I 44,287,760 4.6 ×​ 10–8 I/D 1.03 0.0051 0.34 T [TOPAZ1]; TCAIM, 
–91,850; ZNF445, 193,501

3 157.616–158.354 rs7430565 158,107,180 2.9 ×​ 10–9 A/G 0.97 0.0048 0.58 H [RSRC1]; LOC100996447, 
155,828; MLF1, –181,772

4 41.880–42.189 rs34215985 42,047,778 3.1 ×​ 10–9 C/G 0.96 0.0063 0.24 [SLC30A9]; LINC00682, 
–163,150; DCAF4L1, 
59,294

5 87.443–88.244 chr5_87992715_I 87,992,715 7.9 ×​ 10–11 I/D 0.97 0.0050 0.58 H LINC00461, –12,095; 
MEF2C, 21,342

5 103.672–104.092 chr5_103942055_D 103,942,055 7.5 ×​ 10–12 I/D 1.03 0.0048 0.48 C

5 124.204–124.328 rs116755193 124,251,883 7.0 ×​ 10–9 T/C 0.97 0.0050 0.38 LOC101927421, –120,640

5 164.440–164.789 rs11135349 164,523,472 1.1 ×​ 10–9 A/C 0.97 0.0048 0.48 H

5 166.977–167.056 rs4869056 166,992,078 6.8 ×​ 10–9 A/G 0.97 0.0050 0.63 [TENM2]

6 27.738–32.848 rs115507122 30,737,591 3.3 ×​ 10–11 C/G 0.96 0.0063 0.18 S Extended MHC

6 99.335–99.662 rs9402472 99,566,521 2.8 ×​ 10–8 A/G 1.03 0.0059 0.24 FBXL4, –170,672; 
C6orf168, 154,271

7 12.154–12.381 rs10950398 12,264,871 2.6 ×​ 10–8 A/G 1.03 0.0049 0.41 [TMEM106B]; VWDE, 
105,637

7 108.925–109.230 rs12666117 109,105,611 1.4 ×​ 10–8 A/G 1.03 0.0048 0.47

9 2.919–3.009 rs1354115 2,983,774 2.4 ×​ 10–8 A/C 1.03 0.0049 0.62 H PUM3, –139,644; 
LINC01231, –197,814

9 11.067–11.847 rs10959913 11,544,964 5.1 ×​ 10–9 T/G 1.03 0.0057 0.76

9 119.675–119.767 rs7856424 119,733,595 8.5 ×​ 10–9 T/C 0.97 0.0053 0.29 [ASTN2]

9 126.292–126.735 rs7029033 126,682,068 2.7 ×​ 10–8 T/C 1.05 0.0093 0.07 [DENND1A]; LHX2, 
–91,820

10 106.397–106.904 rs61867293 106,563,924 7.0 ×​ 10–10 T/C 0.96 0.0061 0.20 H [SORCS3]

11 31.121–31.859 rs1806153 31,850,105 1.2 ×​ 10–9 T/G 1.04 0.0059 0.22 [DKFZp686K1684]; 
[PAUPAR]; ELP4, 44,032; 
PAX6, –10,596

12 23.924–24.052 rs4074723 23,947,737 3.1 ×​ 10–8 A/C 0.97 0.0049 0.41 [SOX5]

13 44.237–44.545 rs4143229 44,327,799 2.5 ×​ 10–8 A/C 0.95 0.0091 0.92 [ENOX1]; LACC1, 
–125,620; CCDC122, 
82,689

13 53.605–54.057 rs12552 53,625,781 6.1 ×​ 10–19 A/G 1.04 0.0048 0.44 H [OLFM4]; LINC01065, 
80,099

14 41.941–42.320 rs4904738 42,179,732 2.6 ×​ 10–9 T/C 0.97 0.0049 0.57 [LRFN5]

14 64.613–64.878 rs915057 64,686,207 7.6 ×​ 10–10 A/G 0.97 0.0049 0.42 [SYNE2]; MIR548H1, 
–124,364; ESR2, 7,222

14 75.063–75.398 chr14_75356855_I 75,356,855 3.8 ×​ 10–9 D/I 1.03 0.0049 0.49 [DLST]; PROX2, –26,318; 
RPS6KL1, 13,801

14 103.828–104.174 rs10149470 104,017,953 3.1 ×​ 10–9 A/G 0.97 0.0049 0.49 S BAG5, 4,927; APOPT1, 
–11,340

15 37.562–37.929 rs8025231 37,648,402 2.4 ×​ 10–12 A/C 0.97 0.0048 0.57 H
Continued
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variants that predispose to MDD overlap substantially with those 
for adult- and childhood-onset psychiatric disorders, although they 
remain substantially distinct as well.

Third, the common variant genetic architecture of major  
depression was positively correlated with multiple measures of  
sleep quality (daytime sleepiness, insomnia, and tiredness). The 
first two of these correlations used UK Biobank data with people 
endorsing major depression or other major psychiatric disorders, 
shift workers, and those taking hypnotics excluded. This pattern 
of correlations combined with the importance of sleep and fatigue 
in major depression (two criteria for MDD) suggests a close and 
potentially profound mechanistic relationship. Major depression 
also had a strong genetic correlation with neuroticism (a person-
ality dimension assessing the degree of emotional instability); this 
is consistent with the literature showing a close interconnection of 
MDD and this personality trait. The strong negative rg with sub-
jective well-being underscores the capacity of major depression to 
impact human health.

Finally, major depression had significant negative genetic cor-
relations with data from two studies of educational attainment, 
which while often considered at the genetic level as proxy measures 
of intelligence also likely includes more complex personality con-
structs. With this in mind, it is relevant to note that the rg between 
major depression and IQ61 was not significantly different from zero, 
despite the rg between years of education and IQ being 0.7, implying 
complex relationships between these traits worthy of future investi-
gation. We also found significant positive correlations with multiple 
measures of adiposity, relationship to female reproductive behavior 
(decreased age at menarche, age at first birth, and increased number 
of children), and positive correlations with coronary artery disease 
and lung cancer.

We used bidirectional Mendelian randomization (MR) to inves-
tigate the relationships between four traits genetically correlated 
with major depression: years of education (EDY)62, body mass 
index (BMI)29, coronary artery disease (CAD)63, and schizophre-
nia19. These traits were selected because all of the following were 
true: they were phenotypically associated with MDD, had signifi-
cant rg with MDD, and had >​30 independent genome-wide sig-
nificant associations from large GWAS. We report GSMR64 results 
but obtained qualitatively similar results with other MR methods 
(Supplementary Fig. 4 and Supplementary Table 13). MR analyses 
provided evidence for a 1.12-fold increase in major depression per 
s.d. of BMI (PGSMR =​ 1.2 ×​ 10−7) and a 0.84-fold decrease in major 
depression per s.d. of EDY (PGSMR =​ 2.3 ×​ 10−6). There was no evi-
dence of reverse causality of major depression for BMI (PGSMR =​ 
0.53) or EDY (PGSMR =​ 0.11). For BMI, there was some evidence of 
pleiotropy, as six BMI-associated SNPs were excluded by the HEIDI 
outlier test including SNPs near OLFM4 and NEGR1. Thus, these 
results are consistent with EDY and BMI as either causal risk factors 
or correlated with causal risk factors for major depression. These 
results provide hypotheses for future research to understand these 
potentially directional relationships.

For CAD, the MR analyses were not significant when con-
sidering major depression as an outcome (PGSMR =​ 0.30) or as  
an exposure (PGSMR =​ 0.12); however, the high standard error  
of the estimates using MDD SNP instruments implies that this 
analysis should be revisited when more major genome-wide sig-
nificant SNP instruments for depression become available from  
future GWAS.

We used MR to investigate the relationship between major 
depression and schizophrenia. Although major depression had 
positive rg with many psychiatric disorders, only schizophrenia had 

Chr. Region (Mb) SNP Location (bp) P A1/
A2

OR 
(A1)

s.e. 
(log(OR))

Freq. Prev. Gene context

16 6.288–6.347 rs8063603 6,310,645 6.9 ×​ 10–9 A/G 0.97 0.0053 0.65 [RBFOX1]

16 7.642–7.676 rs7198928 7,666,402 1.0 ×​ 10–8 T/C 1.03 0.0050 0.62 [RBFOX1]

16 13.022–13.119 rs7200826 13,066,833 2.4 ×​ 10–8 T/C 1.03 0.0055 0.25 [SHISA9]; CPPED1, 
–169,089

16 71.631–72.849 rs11643192 72,214,276 3.4 ×​ 10–8 A/C 1.03 0.0049 0.41 PMFBP1, –7,927; DHX38, 
67,465

17 27.345–28.419 rs17727765 27,576,962 8.5 ×​ 10–9 T/C 0.95 0.0088 0.92 [CRYBA1]; MYO18A, 
–69,555; NUFIP2, 5,891

18 36.588–36.976 rs62099069 36,883,737 1.3 ×​ 10–8 A/T 0.97 0.0049 0.42 [MIR924HG]

18 50.358–50.958 rs11663393 50,614,732 1.6 ×​ 10–8 A/G 1.03 0.0049 0.45 O [DCC]; MIR4528, 
–148,738

18 51.973–52.552 rs1833288 52,517,906 2.6 ×​ 10–8 A/G 1.03 0.0054 0.72 [RAB27B]; CCDC68, 
50,833

18 52.860–53.268 rs12958048 53,101,598 3.6 ×​ 10–11 A/G 1.03 0.0051 0.33 S [TCF4]; MIR4529, 
–44,853

22 40.818–42.216 rs5758265 41,617,897 7.6 ×​ 10–9 A/G 1.03 0.0054 0.28 H,S [L3MBTL2]; EP300-AS1, 
–24,392; CHADL, 7,616

Chr. (chromosome) and region (boundaries in Mb; hg19) are shown, defined by the locations of SNPs with P <​ 1 ×​ 10−5 and LD r2 >​ 0.1 with the most strongly associated SNP (logistic regression; the lowest 
P value in the region listed is not corrected for multiple testing), whose location is given in base pairs. In three regions, a second SNP fulfilled the filtering criteria and was followed up with conditional 
analyses: chr. 1, conditional analysis selected only rs1432639 as significant, with P =​ 2.0 ×​ 10−4 for rs12134600 after fitting rs1432639; chr. 5, conditional analysis showed two independent associations 
selecting rs247910 and rs10514301 as the most strongly associated SNPs; chr. 10, conditional analysis selected only rs61867293 with P =​ 8.6 ×​ 10−5 for rs1021363 after conditioning on rs61867293. 
For each of the 47 SNPs, there was at least one additional genome-wide significant SNP in the cluster of surrounding SNPs with low P values. Chromosome X was analyzed but had no findings that met 
genome-wide significance. Entries in the “Prev.” column indicate which of four previous studies identified genome-wide significant associations in a region: H, Hyde et al.28, 23andMe genome-wide 
association of self-reported clinical depression (the discovery sample overlaps with this paper); O, Okbay et al.16, meta-analysis of genome-wide association of MDD, depressive symptoms, psychological 
well-being, and neuroticism (includes many PGC29 samples); S, PGC report on 108 schizophrenia-associated loci19; C, CHARGE Consortium meta-analysis of depressive symptoms14. The “Gene context” 
column shows the distances between the peak SNP and the closest genes; brackets indicate that the peak SNP was within that gene. The closest genes upstream (taking strand into account; a negative 
number indicates distance in base pairs between the peak SNP and the nearest gene boundary) and downstream (positive distance in base pairs) are also shown if there was a flanking gene within 200 kb. 
The name of the closest gene is in brackets. Note that it is generally not known whether associated SNPs have biological effects on these or other more distant genes. A1/A2, the two alleles (or insertion–
deletion) at each SNP; A1 was tested for association and its OR (odds ratio) and s.e. are shown; Freq., the frequency of A1 in controls across all cohorts.

Table 2 | 44 significantly associated genomic regions in meta-analysis of 135,458 major depression cases and 344,901 controls (continued)
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sufficient associations for MR analyses. We found significant bidi-
rectional correlations in SNP effect sizes for schizophrenia loci in 
major depression (PGSMR =​ 1.1 ×​ 10−40) and for major depression 
loci in schizophrenia (PGSMR =​ 1.5 ×​ 10−11). These results suggest 
that the major depression–schizophrenia rg of 0.34 is consistent with 
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Fig. 3 | Analyses exploring enrichment of major depression association 
results based on different SNP annotations. a, Enrichment in bulk tissue 
mRNA-seq data from GTEx shown as t statistics; sample sizes in the GTEx 
database range from n =​ 75–564. The threshold for significance accounting 
for multiple testing is shown by the vertical line. b, Major depression 
results and enrichment in three major brain cell types shown as t statistics; 
the threshold for significance accounting for multiple testing is shown by 
the horizontal line. Sample sizes vary as these data were aggregated from 
many different sources. c, Partitioned LDSC to evaluate enrichment of the 
major depression genome-wide association findings in over 50 functional 
genomic annotations (Supplementary Table 8) shown as enrichment 
statistics; the threshold for significance accounting for multiple testing is 
shown by the horizontal dashed line. Sample sizes vary as these data were 
aggregated from many different sources.

Table 3 | LDSC genetic correlations of MDD with other 
disorders, diseases, and human traits

Trait rg s.e. FDR hSNP
2 Ref.

Depressive symptoms, 
CHARGE

0.91 0.123 3.2 ×​ 10−12 0.04 14

Depressive symptoms, 
SSGAC

0.98 0.034 1.3 ×​ 10–176 0.05 16

ADHD (iPSYCH-PGC) 0.42 0.033 6.1 ×​ 10–36 0.24 83

Anorexia nervosa 0.13 0.028 7.1 ×​ 10–5 0.55 84

Anxiety disorders 0.80 0.140 2.0 ×​ 10–7 0.06 85

Autism spectrum  
disorders (iPSYCH- 
PGC)

0.44 0.039 8.4 ×​ 10–28 0.20 86

Bipolar disorder 0.32 0.034 3.3 ×​ 10–19 0.43 20

Schizophrenia 0.34 0.025 7.7 ×​ 10–40 0.46 19

Smoking, ever versus  
never

0.29 0.038 7.0 ×​ 10–13 0.08 87

Daytime sleepinessa 0.19 0.048 5.7 ×​ 10–4 0.05 –

Insomniaa 0.38 0.038 4.0 ×​ 10–22 0.13 –

Tiredness 0.67 0.037 6.2 ×​ 10–72 0.07 88

Subjective well-being –0.65 0.035 7.5 ×​ 10–76 0.03 16

Neuroticism 0.70 0.031 2.5 ×​ 10–107 0.09 16

College completion –0.17 0.034 6.7 ×​ 10–6 0.08 89

Years of education –0.13 0.021 1.6 ×​ 10–8 0.13 62

Body fat 0.15 0.038 6.5 ×​ 10–4 0.11 90

Body mass index 0.09 0.026 3.6 ×​ 10–3 0.19 32

Obesity class 1 0.11 0.029 1.6 ×​ 10–3 0.22 30

Obesity class 2 0.12 0.033 3.0 ×​ 10–3 0.18 30

Obesity class 3 0.20 0.053 1.6 ×​ 10–3 0.12 30

Overweight 0.13 0.030 1.4 ×​ 10–4 0.11 30

Waist circumference 0.11 0.024 8.2 ×​ 10–5 0.12 91

Waist-to-hip ratio 0.12 0.030 2.9 ×​ 10–4 0.11 91

Triglycerides 0.14 0.028 1.0 ×​ 10–5 0.17 92

Age at menarche –0.14 0.023 6.3 ×​ 10–8 0.20 93

Age of first birth –0.29 0.029 6.1 ×​ 10–22 0.06 94

Father’s age at death –0.28 0.058 3.0 ×​ 10–5 0.04 95

Number of children  
ever born

0.13 0.036 2.4 ×​ 10–3 0.03 94

Coronary artery  
disease

0.12 0.027 8.2 ×​ 10–5 0.08 63

Squamous cell lung  
cancer

0.26 0.075 3.6 ×​ 10–3 0.04 96

All genetic correlations (rg) estimated using bivariate LDSC applied to major depression genome-
wide association results are in Supplementary Table 12. Shown above are the rg values of major 
depression with false discovery rate (FDR) <​ 0.01 (FDR estimated for 221 genetic correlations; H0: 
rg =​ 0). Thematically related traits are indicated by bold font. iPSYCH is a nationally representative 
cohort based on blood spots collected at birth. Within iPSYCH, rg with ADHD was 0.58 (s.e. =​ 
0.050) and with ASD was 0.51 (s.e. =​ 0.07); these values are larger than those listed above and 
are inconsistent with artifactual correlations. hSNP

2  is shown to aid interpretation as high rg in the 
context of high hSNP

2  is more noteworthy than when hSNP
2 is low.aSelf-reported daytime sleepiness 

and insomnia from UK Biobank excluding subjects with major depression, other psychiatric 
disorders (bipolar disorder, schizophrenia, autism, intellectual disability), shift workers, and those 
taking hypnotics.
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partially shared biological pathways being causal for both disorders. 
Although it is plausible that diagnostic misclassification/ambigu-
ity (for example, misdiagnosis of MDD as schizoaffective disorder) 
could contaminate these analyses, levels of misclassification would 
need to be implausibly high (30% unidirectional, 15% bidirectional) 
to result in an rg of ~0.365.

All MR analyses were repeated after excluding the 23 and  
Me cohort, and the pattern of the results was the same 
(Supplementary Table 13).

Discussion
The nature of severe depression has been discussed for millennia66. 
This genome-wide association meta-analysis is among the larg-
est ever conducted in psychiatric genetics and provides a body of 
results that helps refine the fundamental basis of major depression.

In conducting this meta-analysis of major depression, we 
employed a pragmatic approach by including cohorts that met 
empirical criteria for sufficient genetic and phenotypic similarity. 
Our approach was cautious, clinically informed, guided by empiri-
cal data, and selective (for example, we did not include cohorts with 
bipolar disorder (which requires MDD), depressive symptoms, neu-
roticism, or well-being). Approximately 44% of all major depression 
cases were assessed using traditional methods (PGC29, GenScot), 
treatment registers (iPSYCH, GERA; such approaches have been 
extensively used to elucidate the epidemiology of major depression), 
or a combination of methods (deCODE, UK Biobank), whereas 
~56% of cases were from 23andMe (via self-report)28. Multiple lines 
of genetic evidence supported conducting meta-analysis of these 
seven cohorts (for example, out-of-sample prediction, sign tests, 
and genetic correlations).

However, our approach may be controversial to some readers 
given the unconventional reliance on self-report of major depres-
sion. We would reframe the issue: we hypothesize that brief meth-
ods of assessing major depression are informative for the genetics 
of MDD. We present a body of results that is consistent with this 
hypothesis. Even if unconventional, our hypothesis is testable and 
falsifiable, and we invite and welcome empirical studies to further 
support or refute this hypothesis.

Our results lead us to draw some broad conclusions. First, major 
depression is a brain disorder. Although this is not unexpected, 
some past models of MDD have had little or no place for heredity 
or biology. The genetic results best match gene expression patterns 
in the prefrontal and anterior cingulate cortex, anatomical regions 
that show differences between MDD cases and controls. The genetic 
findings implicated neurons (not microglia or astrocytes), and we 
anticipate more detailed cellular localization when sufficient single-
cell and single-nucleus RNA-seq datasets become available67.

Second, the genetic associations for major depression (as with 
schizophrenia)46 tend to occur in genomic regions conserved across 
a range of placental mammals. Conservation suggests important 
functional roles. Notably, our analyses did not implicate exons or 
coding regions.

Third, the results also implicated developmental gene regulatory 
processes. For instance, the genetic findings pointed at the splicing 
regulator RBFOX1 (the presence of two independent genetic asso-
ciations in RBFOX1 strongly suggests that it is the relevant gene). 
Gene set analyses implicated genes containing binding sites to the 
protein product of RBFOX1, and this gene set is also significantly 
enriched for rare exonic variation in autism and schizophrenia56,57. 
These analyses highlight the potential importance of splicing to 
generate alternative isoforms; risk for major depression may be 
mediated not by changes in isolated amino acids but rather by 
changes in the proportions of isoforms coming from a gene, given 
that isoforms often have markedly different biological functions68,69.  
These convergent results provide possible clues to a biological 
mechanism common to multiple severe psychiatric disorders that 
merits future research.

Fourth, in the most extensive analysis of the genetic ‘connec-
tions’ of major depression with a wide range of disorders, diseases, 
and human traits, we found significant positive genetic correlations 
with measures of body mass and negative genetic correlations with 
years of education, while showing no evidence of genetic correla-
tion with IQ. MR analysis results are consistent with both BMI and 
years of education being causal, or correlated with causal, risk fac-
tors for major depression, and our results provide hypotheses and 
motivation for more detailed prospective studies, as currently avail-
able data may not provide insight about the fundamental driver or 
drivers of causality. The underlying mechanisms are likely more 
complex, as it is difficult to envision how genetic variation in educa-
tional attainment or body mass alters risk for MDD without invok-
ing an additional mechanistic component. While the significant MR 
analyses need further investigations to fully understand, the nega-
tive MR results provide important evidence that there is not a direct 
causal relationship between MDD and subsequent changes in body 
mass or education years. If such associations are observed in epi-
demiological or clinical samples, then other factors must drive the 
association.

Fifth, we found significant positive correlations of major depres-
sion with all psychiatric disorders that we evaluated, including dis-
orders prominent in childhood. This pattern of results indicates 
that the current classification scheme for major psychiatric disor-
ders does not align well with the underlying genetic basis of these 
disorders. Currently, only schizophrenia has a sufficient number of 
genome-wide significant loci to conduct MR analysis, but the bidi-
rectionally significant MR results are consistent with a shared bio-
logical basis for major depression and schizophrenia.
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Fig. 4 | Generative topographic mapping of the 19 significant pathway 
results. The average position of each pathway on the map is represented 
by a point. The map is colored by the –log10 P value obtained using 
MAGMA. The x and y coordinates were obtained from a kernel generative 
topographic mapping algorithm (GTM) that reduces high-dimensional gene 
sets to a 2D scatterplot by accounting for gene overlap between gene sets. 
Each point represents a gene set. Nearby points are more similar in gene 
overlap than more distant points. The color surrounding each point (gene 
set) corresponds to significance according to the scale on the right. The 
significant pathways (Supplementary Table 11) fall into nine main clusters 
as described in the text.
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The dominant psychiatric nosological systems were principally 
designed for clinical utility and are based on data that emerge dur-
ing human interactions (i.e., observable signs and reported symp-
toms) and not objective measurements of pathophysiology. MDD is 
frequently comorbid with other psychiatric disorders, and the phe-
notypic comorbidity has an underlying structure that reflects shared 
origins (as inferred from factor analyses and twin studies)70–73. Our 
genetic results add to this knowledge: major depression is not a dis-
crete entity at any level of analysis. Rather, our data strongly suggest 
the existence of biological processes common to major depression 
and schizophrenia (and likely other psychiatric disorders).

Finally, as expected, we found that major depression had mod-
est hSNP

2  (8.7%), as it is a complex malady with both genetic and 
environmental determinants. We found that major depression 
has a very high genetic correlation with proxy measures that can 
be briefly assessed. Lifetime major depressive disorder requires a 
constellation of signs and symptoms whose reliable scoring requires 
an extended interview with a trained clinician. However, the com-
mon variant genetic architecture of lifetime major depression in 
these seven cohorts (containing many subjects medically treated for 
MDD) has strong overlap with that of current depressive symptoms 
in general community samples. Similar relationships of clinically 
defined ADHD or autism with quantitative genetic variation in the 
population have been reported74,75. The ‘disorder-versus-symptom’ 
relationship has been debated extensively76, but our data indicate 
that the common variant genetic overlap is very high. This finding 
has important implications.

One implication is for future genetic studies. In a first phase, 
it should be possible to elucidate the bulk of the common variant 
genetic architecture of MDD using a cost-effective shortcut—large 
studies of genotyped individuals who complete online self-report 
assessments of lifetime MDD (a sample size approaching 1 million 
MDD cases may be achievable by 2020). Use of online assessment 
could allow for recording of a broad range of phenotypes including 
comorbidities and putative environmental exposures, but with the 
key feature being large samples with consistently assessed measures. 
In a second phase, with a relatively complete understanding of the 
genetic basis of major depression, one could then evaluate smaller 
samples of carefully phenotyped individuals with MDD to under-
stand the clinical importance of the genetic results. Subsequent 
empirical studies may show that it is possible to stratify MDD cases 
at first presentation to identify individuals at high risk for recur-
rence, poor outcome, poor treatment response, or who might 
subsequently develop a psychiatric disorder requiring alternative 
pharmacotherapy (for example, schizophrenia or bipolar disorder). 
This could form a cornerstone of precision medicine in psychiatry.

In summary, this genome-wide association meta-analysis of 
135,438 MDD and major depression cases and 344,901 controls 
identified 44 loci. An extensive set of companion analyses pro-
vide insights into the nature of MDD as well as its neurobiology, 
therapeutic relevance, and genetic and biological interconnections 
to other psychiatric disorders. Comprehensive elucidation of these 
features is the primary goal of our genetic studies of MDD.

URLs. 1000 Genomes Project multi-ancestry imputation panel, 
https://mathgen.stats.ox.ac.uk/impute/data_download_1000G_
phase1_integrated.html; 23andMe privacy policy, https://
www.23andme.com/en-eu/about/privacy; Bedtools, https://bed-
tools.readthedocs.io; dbGaP, https://www.ncbi.nlm.nih.gov/gap; 
genotype-based checksums for relatedness determination, http://
www.broadinstitute.org/~sripke/share_links/checksums_down-
load; GSMR, http://cnsgenomics.com/software/gsmr/; GTEx, 
http://www.gtexportal.org/home/datasets; GTMapTool, http://
infochim.u-strasbg.fr/mobyle-cgi/portal.py#forms::gtmaptool; 
LD-Hub, http://ldsc.broadinstitute.org/; PGC, http://www.med.
unc.edu/pgc; NIH NeuroBiobank, https://neurobiobank.nih.gov/; 

PGC ricopili genome-wide association analysis pipeline, https://
github.com/Nealelab/ricopili; SMR, http://cnsgenomics.com/soft-
ware/smr/#Overview; TWAS, http://gusevlab.org/projects/fusion/; 
UK Biobank, http://www.ukbiobank.ac.uk/.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41588-018-0090-3.
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Methods
PGC29 cohort. Our analysis was anchored in a genome-wide association mega-
analysis of 29 samples of European ancestry (16,823 MDD cases and 25,632 
controls). Supplementary Table 1 summarizes the source and inclusion/exclusion 
criteria for cases and controls for each sample. All PGC29 samples passed a 
structured methodological review by MDD assessment experts (D.F.L. and K.S.K.). 
Cases were required to meet international consensus criteria (DSM-IV, ICD-9, 
or ICD-10)97–99 for a lifetime diagnosis of MDD established using structured 
diagnostic instruments from assessments by trained interviewers, clinician-
administered checklists, or medical record review. All cases met standard criteria 
for MDD, were directly interviewed (28/29 samples), or had medical record review 
by an expert diagnostician (1/29 samples), and most were ascertained from clinical 
sources (19/29 samples). Controls in most samples were screened for the absence 
of lifetime MDD (22/29 samples) and randomly selected from the population.

Additional cohorts. We critically evaluated six independent European-ancestry 
cohorts (118,635 cases and 319,269 controls). Supplementary Table 2 summarizes 
the source and inclusion/exclusion criteria for cases and controls for each cohort. 
These cohorts used a range of methods for assessing MDD or major depression. 
Most studies included here applied otherwise typical inclusion and exclusion 
criteria for both cases and controls (for example, excluding cases with lifetime 
bipolar disorder or schizophrenia and excluding controls with major depression).

Cohort comparability. Supplementary Table 3 summarizes the numbers of 
cases and controls in PGC29 and the six additional cohorts. The most direct 
and important way to evaluate the comparability of these cohorts for a genome-
wide association meta-analysis is using SNP genotype data22,24. We used LD 
score (LDSC) regression (described below) to estimate hSNP

2  for each cohort 
(Supplementary Fig. 1 and Supplementary Table 3) and rg for all pairwise 
combinations of the cohorts (Supplementary Table 3b) and to demonstrate 
no evidence of sample overlap. We used leave-one-sample-out GRSs, finding 
significant differences in case–control GRS distributions of the left-out sample for 
all but one PGC29 sample (Supplementary Table 4). For full details of the cohort 
comparability analyses including GRS analyses, see the Supplementary Note. In 
GRS analyses, the discovery sample was the genome-wide association sample that 
provided the allelic weightings for each SNP, used to generate a sum score for each 
individual in the independent target sample.

Genotyping and quality control. Genotyping procedures can be found in 
the primary reports for each cohort (summarized in Supplementary Table 3). 
Individual genotype data for all PGC29 samples, GERA, and iPSYCH were 
processed using the PGC ricopili pipeline (see URLs) for standardized quality 
control, imputation, and analysis19. The cohorts from deCODE, Generation 
Scotland, UK Biobank, and 23andMe were processed by the collaborating research 
teams using comparable procedures. SNPs and insertion–deletion polymorphisms 
were imputed using the 1000 Genomes Project multi-ancestry reference panel 
(see URLs)100. More detailed information on sample quality control is provided in 
the Supplementary Note.

LD score regression. LDSC was used to estimate hSNP
2  from genome-wide 

association summary statistics. Estimates of hSNP
2  on the liability scale depend on 

the assumed lifetime prevalence of MDD in the population (K), and we assumed 
K =​ 0.15 but also evaluated a range of estimates of K to explore sensitivity, 
including 95% confidence intervals (Supplementary Fig. 1). LDSC bivariate genetic 
correlations attributable to genome-wide SNPs (rg) were estimated across all MDD 
and major depression cohorts and between the full cohort subjected to meta-
analysis and other traits and disorders.

LDSC was also used to partition hSNP
2  by genomic features24,46. We tested for 

enrichment of hSNP
2  based on genomic annotations, partitioning hSNP

2  proportional 
to the base-pair length represented by each annotation. We used the ‘baseline 
model’, which consists of 53 functional categories. The categories are fully 
described elsewhere46 and included conserved regions47, USCC gene models (exons, 
introns, promoters, UTRs), and functional genomic annotations constructed 
using data from ENCODE101 and the Roadmap Epigenomics Consortium102. 
We complemented these annotations by adding introgressed regions from the 
Neanderthal genome in European populations103 and open chromatin regions from 
the brain dorsolateral prefrontal cortex. The open chromatin regions were obtained 
from an ATAC–seq experiment performed in 288 samples (n =​ 135 controls, 137 
schizophrenia cases, 10 bipolar cases, and 6 affective disorder cases)104. Peaks called 
with MACS105 (1% FDR) were retained if their coordinates overlapped in at least 
two samples. The peaks were recentered and set to a fixed width of 300 bp using the 
diffbind R package106. To prevent upward bias in heritability enrichment estimation, 
we added two categories created by expanding both the Neanderthal introgressed 
regions and open chromatin regions by 250 bp on each side.

We used LDSC to estimate rg between major depression and a range of other 
disorders, diseases, and human traits22. The intent of these comparisons was to 
evaluate the extent of shared common variant genetic architectures to suggest 
hypotheses about the fundamental genetic basis of major depression (given its 
extensive comorbidity with psychiatric and medical conditions and its association 

with anthropometric and other risk factors). Subject overlap of itself does not bias 
rg. These rg values were mostly based on studies of independent subjects, and the 
estimates should be unbiased by confounding of genetic and non-genetic effects 
(except if there is genotype by environment correlation). When GWAS include 
overlapping samples, rg remains unbiased but the intercept of the LDSC regression 
is an estimate of the correlation between the association statistics attributable to 
sample overlap. These calculations were done using the internal PGC genome-wide 
association library and with LD-Hub (see URLs)60.

Integration of genome-wide association findings to tissue and cellular gene 
expression. We used partitioned LDSC to evaluate which somatic tissues were 
enriched for major depression heritability107. Gene expression data generated 
using mRNA-seq from multiple human tissues were obtained from GTEx v6p (see 
URLs). Genes for which <​4 samples had at least one read count per million were 
discarded, and samples with <​100 genes with at least one read count per million 
were excluded. The data were normalized, and a t statistic was obtained for each 
tissue by comparing the expression in each tissue with the expression of all other 
tissues with the exception of tissues related to the tissue of interest (for example, 
brain cortex versus all other tissues excluding other brain samples), using sex and 
age as covariates. A t statistic was also obtained for each tissue among its related 
tissues (for example, cortex versus all other brain tissues) to test which brain 
region was the most associated with major depression, also using sex and age as 
covariates. The top 10% of the genes with the most extreme t statistic were defined 
as tissue specific. The coordinates for these genes were extended by a 100-kb 
window and tested using LD score regression. Significance was obtained from the 
coefficient z score, which corrects for all other categories in the baseline model.

Lists of genes specifically expressed in neurons, astrocytes, and 
oligodendrocytes were obtained from Cahoy et al.45. As these experiments were 
done in mice, genes were mapped to human orthologous genes using Ensembl. The 
coordinates for these genes were extended by a 100-kb window and tested using 
LD score regression as for the GTEx tissue-specific genes.

We conducted eQTL lookups of the most associated SNPs in each region and 
report genome-wide association SNPs in LD (r2 >​ 0.8) with the top eQTLs in the 
following datasets: eQTLGen Consortium (Illumina arrays in whole blood,  
n =​ 14,115), BIOS (RNA-seq in whole blood, n =​ 2,116)108, NESDA/NTR 
(Affymetrix arrays in whole blood, n =​ 4,896)109, GEUVADIS (RNA-seq in LCLs,  
n =​ 465)110, Rosmap (RNA-seq in cortex, n =​ 494)111, GTEx (RNA-seq in 44 tissues, 
n >​ 70)43, and Common Mind Consortium (CMC; prefrontal cortex, Sage Synapse 
accession syn5650509, n =​ 467)51.

We used SMR49 to identify loci with strong evidence of causality via gene 
expression and DNA methylation (eQTLs and meQTLs). SMR analysis is limited 
to significant cis-SNP expression (FDR <​ 0.05) and SNPs with MAF >​0.01 at a 
Bonferroni-corrected pSMR. Owing to LD, multiple SNPs may be associated with 
the expression of a gene, and some SNPs are associated with the expression of more 
than one gene. The aim of SMR is to prioritize variants and genes for subsequent 
studies, and a test for heterogeneity excludes regions that may harbor multiple 
causal loci (pHET <​ 0.05; a very conservative threshold). SMR analyses were 
conducted using eQTLs from the eQTLGen Consortium (whole blood), GTEx  
(11 brain tissues), and the CMC43,51 as well as meQTLs from whole blood112.

We conducted a transcriptome-wide association study50 using precomputed 
expression reference weights for CMC data (5,420 genes with significant cis-
SNP heritability) provided with the TWAS/FUSION software. The significance 
threshold was 0.05/5,420.

DNA looping using Hi-C. Dorsolateral prefrontal cortex (Brodmann area 9) was 
dissected from post-mortem samples from three adults of European ancestry 
(C.S.). Cerebra from three fetal brains were obtained from the NIH NeuroBiobank 
(see URLs; gestation age 17–19 weeks, African ancestry). We used ‘easy Hi-C’ to 
assess DNA chromatin (looping) interactions (Supplementary Note).

Gene-wise and pathway analyses. Our approach was guided by rigorous method 
comparisons conducted by PGC members55,113. P values quantifying the degree 
of association of genes and gene sets with MDD were generated using MAGMA 
(v1.06)114. MAGMA uses Brown’s method to combine SNP P values and account 
for LD. We used Ensembl gene models for 19,079 genes, giving a Bonferroni-
corrected P-value threshold of 2.6 ×​ 10−6. Gene set P values were obtained using 
a competitive analysis that tests whether genes in a gene set are more strongly 
associated with the phenotype than other gene sets. We used European-ancestry 
subjects from the 1000 Genomes Project (Phase 3 v5a, MAF ≥​ 0.01)115 for the LD 
reference. The gene window used was 35 kb upstream and 10 kb downstream to 
include regulatory elements.

Gene sets were from two main sources. First, we included gene sets previously 
shown to be important for psychiatric disorders (71 gene sets; for example, FMRP 
binding partners, de novo mutations, GWAS top SNPs, ion channels)57,116,117. 
Second, we included gene sets from MSigDB (v5.2)118, which includes canonical 
pathways and Gene Ontology gene sets. Canonical pathways were curated from 
BioCarta, KEGG, Matrisome, the Pathway Interaction Database, Reactome, Sigma-
Aldrich, Signaling Gateway, Signal Transduction KE, and SuperArray. Pathways 
containing from 10–10,000 genes were included.
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To evaluate gene sets related to antidepressants, gene sets were extracted from 
the Drug–Gene Interaction database (DGIdb v.2.0)119 and the NIMH Psychoactive 
Drug Screening Program Ki DB120 downloaded in June 2016. The association of 
3,885 drug gene sets with major depression was estimated using MAGMA (v1.6). 
The drug gene sets were ordered by P value, and the Wilcoxon–Mann–Whitney 
test was used to assess whether the 42 antidepressant gene sets in the dataset (ATC 
code N06A in the Anatomical Therapeutic Chemical Classification System) had a 
higher ranking than expected by chance.

One issue is that some gene sets contain overlapping genes, and these may 
reflect largely overlapping results. The pathway map was constructed using the 
kernel generative topographic mapping algorithm (k-GTM) as described by  
Olier et al.121. GTM is a probabilistic alternative to Kohonen maps: the kernel 
variant is used when the input is a similarity matrix. The GTM and k-GTM 
algorithms are implemented in GTMapTool (see URLs). We used the Jaccard 
similarity matrix of FDR-significant pathways as input for the algorithm, where 
each pathway is encoded by a vector of binary values representing the presence  
(1) or absence (0) of a gene. The parameters for the k-GTM algorithm are the 
square root of the number of grid points (k), the square root of the number of  
RBF functions (m), the regularization coefficient (l), the RBF width factor (w),  
and the number of feature space dimensions for the kernel algorithm (b). We  
set k equal to the square root of the number of pathways, m equal to the square 
root of k, l =​ 1 (default), w =​ 1 (default), and b equal to the number of principal 
components explaining 99.5% of the variance in the kernel matrix. The output  
of the program is a set of coordinates representing the average positions of 
pathways on a 2D map. The x and y axes represent the dimensions of a 2D latent 
space. The pathway coordinates and corresponding MAGMA P values were used 
to build the pathway activity landscape using the kriging interpolation algorithm 
implemented in the R gstat package.

Mendelian randomization. We conducted bidirectional MR122 analysis for  
four traits: years of education (EDY)62, body mass index (BMI)29, coronary  
artery disease (CAD)63, and schizophrenia (SCZ)19. We denote z as a genetic 
variant (a SNP) that is significantly associated with x, an exposure or putative 
causal trait for y (the disease/trait outcome). The effect size of x on y can be 
estimated using a two-step least-squares (2SLS)123 approach: = ∕� � �b b bxy zy zx,  
where �bzx is the estimated effect size for the SNP–trait association for the 
exposure trait and �bzy is the effect size estimated for the same SNP in the  
GWAS of the outcome trait.

We used generalized summary statistics–based MR (GSMR)64 to estimate �bxy 
and its standard error from multiple SNPs associated with the exposure trait at 
a genome-wide significance level. We conducted bidirectional GSMR analyses 
for each pair of traits and report results after excluding SNPs that failed the 
HEIDI outlier heterogeneity test (which is more conservative than excluding 
SNPs that have an outlying association likely driven by locus-specific pleiotropy). 
GSMR is more powerful than inverse-weighted MR (IVW-MR) and MR-Egger 
because it takes account of the sampling variation of both �bzx and �bzy. GSMR also 
accounts for residual LD between the clumped SNPs. For comparison, we also 
conducted IVW-MR and MR-Egger analyses124. More details are provided in 
the Supplementary Note.

Genome build. All genomic coordinates are given in NCBI Build 37/UCSC hg19.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability. The PGC’s policy is to make genome-wide summary results 
public. Summary statistics for a combined meta-analysis of PGC29 with five of the 
six expanded samples (deCODE, Generation Scotland, GERA, iPSYCH, and UK 
Biobank) are available on the PGC website (see URLs). Results for 10,000 SNPs for 
all seven cohorts are also available on the PGC website.

Genome-wide association summary statistics for the Hyde et al. cohort 
(23andMe, Inc.) must be obtained separately. These can be obtained by qualified 
researchers under an agreement with 23andMe that protects the privacy of the 
23andMe participants. Contact David Hinds (dhinds@23andme.com) to apply 
for access to the data. Researchers who have the 23andMe summary statistics can 
readily recreate our results by performing meta-analysis of the six-cohort results 
file with the Hyde et al. results file from 23andMe28.

The availability of genotype data for PGC29 is described in Supplementary 
Table 15. For the expanded cohorts, interested users should contact the lead 
principal investigators of these cohorts (which are separate from the PGC).
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